GEOLOGIC AND STRUCTURE CONTOUR MAP OF THE
SIDNEY 30´x 60´ QUADRANGLE
EASTERN MONTANA AND ADJACENT NORTH DAKOTA

Compiled and mapped by
Susan M. Vuke, Edith M. Wilde, and Larry N. Smith

Montana Bureau of Mines and Geology Open-File Report 478

2003

This report has been reviewed for conformity with Montana Bureau of Mines and
Geology’s technical and editorial standards.

Partial support was provided by the STATEMAP component of the National Cooperative
Geologic Mapping Program of the U.S. Geological Survey under Contract
02HQAG0038.
Location map of Sidney 30'x60' quadrangle and adjacent geologic maps published by MBMG.
CORRELATION DIAGRAM
SIDNEY 30° X 60° QUADRANGLE

Qal Qac
Qgr

unconformity

Tfsb
Tftr
Tfle
Tft
Khc

Qgt Qgl Qgk Qge

QTat QTcl

Holocene
Pleistocene
Pliocene
Paleocene
Upper Cretaceous

Quaternary
Tertiary
Numbers above correspond with reference list below.

2. Parker, F.S., 1936, scale 1:190,000
4. Stebinger, Eugene, 1912, scale 1:125,000.

Entire quad
Mathews, J.E., 1989a, b, c, and d, scale 1:100,000.
Stoner, J.D., and Lewis, B.D., 1980, scale 1:500,000.
DESCRIPTION OF MAP UNITS
SIDNEY 30’ x 60’ QUADRANGLE

Note: Thicknesses are given in feet because original base maps used feet. To convert feet to meters (the contour interval unit on this map), multiply feet x 0.3048.

Qal **Alluvium (Holocene)**—Light-brown, yellowish-brown, grayish-brown, brown, olive, gray, and light-gray gravel, sand, silt, and clay deposited in stream and river channels and on flood plains. Gravel clasts poorly to well sorted and as much as 2 ft in diameter. Deposits poorly to well stratified. Thickness generally less than 20 ft, but locally as much as 40 ft.

Qgr **Gravel (Holocene and Pleistocene?)**—Alluvium and colluvium reworked directly from QTat deposits and deposited on slopes. Color and composition identical to uncedmented QTat. Thickness less than 20 ft.

Qac **Alluvium and colluvium, undivided (Holocene)**—Dominantly sand, silt, and clay in glacial meltwater channels. Color reflects that of older Quaternary and Tertiary units from which it was derived. May locally overlie glacial outwash deposits. Thickness not determined.

Qat **Alluvial terrace deposit (Holocene and Pleistocene)**—Light-brown, grayish-brown, and light-gray gravel, sand, and silt in terrace remnants at elevations ranging from 5 to 360 ft above modern rivers and streams. Gravel clasts generally well sorted and dominantly well rounded. Deposits poorly to well stratified. Thickness generally less than 20 ft.

Qgt **Glacial till (Pleistocene)**—Heterogeneous mixture of light-brown, grayish-brown, and light-gray clay, silt, sand, and gravel with rare to abundant cobbles and boulders. Locally contains lenses and stringers of moderately well sorted clay, silt, sand, or gravel. Thickness generally less than 30 ft, but as much as 100 ft.

Qgo **Glacial outwash deposit (Pleistocene)**—Light-brown, yellowish-brown, brown, and light-gray, fine-grained sand, silt, and clay in glacial meltwater and stream-diversion channels. Thickness not determined. May be more than 50 ft thick in places (Prichard and Landis, 1975).

Qgl **Glacial lake deposit ? (Pleistocene)**—Assumed deposit obscured by younger fine-grained alluvium and colluvium. Thickness not determined.

Qgk **Glacial kame deposit**—(from Prichard and Landis, 1975) Chaotically cross-bedded cobbles, pebbles, and sand in rounded hills. Thickness not determined.

Qge **Glacial esker deposit**—(from Prichard and Landis, 1975) Cross-bedded gravel, sand, silt, and clay in sinuous ridges. Thickness not determined.
QTat Alluvial terrace deposit (Pleistocene and Pliocene?)—Light-brown, yellowish-brown, brown, and light-gray gravel, sand, silt, and clay at elevations higher than Qat. Alluvium of several terraces of different ages and elevations included in this unit. Crudely to well stratified, and poorly to moderately well sorted. In places deposits have been cemented to conglomerate by calcium carbonate or iron oxide. Nearly all clasts are well rounded and composed dominantly of quartzite, chert, volcanic rocks, ironstone concretions, sandstone, and siltstone with minor amounts of shale, agate, silicified wood, jasper, chalcedony, and clinker. Clasts are as much as 15 inches in diameter, but most less than 2 inches. Thickness about 30 ft.

QTcl Clinker (Holocene, Pleistocene, and Pliocene?)—Red, pink, orange, black, and yellow, resistant metamorphosed sandstone, siltstone, and shale of the Fort Union Formation. Bedrock was baked by natural burning of adjacent coal bed. Locally, baked rock was melted and fused to form buchite, a black, glassy, vesicular or scoriaceous rock. Unaltered glacial till lies directly on thick clinker in parts of the map area indicating that some of the beds must have burned before the advance of the ice sheet into this area (Prichard and Landis, 1975). Thickness as much as 60 ft.

Fort Union Formation (Paleocene)

Tfsb Sentinel Butte Member—Dark-gray shale locally underlain by orangish-brown or brown, iron oxide-stained, cross-bedded channel sandstone with medium- to coarse-grained, angular to subangular, poorly sorted clasts. Channel bases display scour features including abundant rip-up clasts. Gray or grayish-brown, poorly resistant mudstone about 20 ft thick underlies the sandstone locally. Prominent coal beds are present near the base of the member in most areas. Upper part of member removed by erosion. Thickness of about 300 ft exposed in map area.

Tftr Tongue River Member—Yellow, orange, or tan, fine- to medium-grained sandstone and thinner interbeds of yellowish-brown, orange, or tan siltstone and light-colored mudstone and clay. Clay dominantly nonswelling. Contains several prominent lignite beds (Mathews, 1989a, b, c, and d). Member generally poorly cemented and weathers to badland topography, but some relatively resistant sandstone beds form caprocks. Locally contains silicified wood, freshwater mollusks, and plant molds. Thickness 850 ft.

Tfle Lebo Member—Medium- to dark-gray, grayish-brown and olive-gray sandstone, siltstone, and mudstone that is typically smectitic or carbonaceous, interbedded with gray to dark-gray, silty shale, thin yellowish-gray siltstone and sandstone, and thin, lenticular lignite beds. Contains small-scale, light-gray, fine- to medium-grained, cross-bedded channel sandstones. Clay typically exhibits characteristic “popcorn” weathering. Thickness about 200 ft.
Tft
Tullock Member—Alternating tan, yellow, brown, and gray, dominantly planar beds of sandstone, siltstone, and shale, and thinner dark gray or black beds of carbonaceous or lignitic shale, and thin, lenticular lignite beds. Thickness about 180 ft.

Khc
Hell Creek Formation—Dominantly gray and grayish-brown sandstone, smectitic, silty mudstone, and a few thin beds of lignite or carbonaceous shale. Only about 70 ft of uppermost part of formation exposed in map area.

MAP SYMBOLS

Contact—Dotted where concealed.

Structure contour line—Number indicates estimated feet above sea level of top of Pierre (Bearpaw) Shale.

Well-log location—Number indicates altitude of top of Pierre (Bearpaw) Shale.
REFERENCES CITED AND BIBLIOGRAPHY

SIDNEY 30’ x 60’ QUADRANGLE

Mathews, J.E., 1989b, Coal stratigraphy and correlation in the Sidney 30x60-minute quadrangle, eastern Montana and adjacent North Dakota—Coal and clinker outcrop, structure contour, coal isopach, and interburden isopach maps of the Prittegurl, Pust, Elvirio, and Sears intervals: Montana Bureau of Mines and Geology Geologic Map GM 50-B, scale 1:100,000.

Mathews, J.E., 1989c, Coal stratigraphy and correlation in the Sidney 30x60-minute quadrangle, eastern Montana and adjacent North Dakota—Coal and clinker outcrop, structure contour, coal isopach, and interburden isopach maps of the Budka, Lane, and Carroll intervals: Montana Bureau of Mines and Geology Geologic Map GM 50-C, 1:100,000 scale.

Mathews, J.E., 1989d, Coal stratigraphy and correlation in the Sidney 30x60-minute quadrangle, eastern Montana and adjacent North Dakota—Paleogeographic diagrams of the Prittegurl, Pust, Elvirio, Sears, Budka, and Lane intervals: Montana Bureau of Mines and Geology Geologic Map GM-50-D, scale 1:100,000.

