Bedrock and Surficial Geologic Map of the Monument Hill 7.5’ Quadrangle Southwest Montana

Mapped and compiled by

Michael L. Newton, Christine A. Regalla, David J. Anastasio, and Frank J. Pazzaglia

Earth and Environmental Sciences Department
Lehigh University, Bethlehem, PA

Montana Bureau of Mines and Geology
Open File Report 517

2005

Revised:
12-05 – text and map

This report has been reviewed for conformity with Montana Bureau of Mines and Geology’s technical and editorial standards.

Partial support has been provided by the EDMAP Program of the National Cooperative Geologic Mapping Program of the U.S. Geological Survey under Contract Number 04HQAG0099
Summary

Key Contributions

This report contains findings that contribute to the understanding of the geology and geologic history of the Monument Hill 7.5’ quadrangle, southwest Montana. The quadrangle contains areas previously mapped by Scholten and others (1955), Pecora (1981), Haley and Perry (1990), and Lonn and others (2000). Significant contributions from the new mapping include: 1) the footwall of the Monument Hill fault is composed of Cretaceous Beaverhead Group, not Tertiary Sixmile Creek Formation (e.g. Lonn and others, 2000). The fault was previously mapped with Sixmile Creek in the footwall and Beaverhead in the hanging wall (Lonn and others, 2000). Reinterpretation of the footwall is consistent with normal-fault kinematics. The contact between the Beaverhead Group and overlying Sixmile Creek Formation is unconformable and is located east of the fault. This contact is dashed on the map because of difficulty involved in differentiating between the two units in this locality. 2) The Sixmile Creek Formation, not the Renova Formation, dominates the Tertiary deposits of the map area. These rocks were previously mapped as Tertiary undivided (Scholten and others, 1955; Pecora, 1981; Haley and Perry, 1990) and later divided by Lonn and others (2000) into the Sixmile Creek Formation and the Renova Formation. The new mapping reinterprets the distribution of these two Tertiary formations in the Monument Hill 7.5’ quadrangle. 3) The deposition of the Sixmile Creek Formation was controlled by paleotopography that developed subsequent to Paleocene Beaverhead deposition (Haley and Perry, 1990). The evolving paleotopography guided the distribution of gravels, volcaniclastics, and volcanics in the Monument Hill area. 4) The Monument Hill fault shows evidence for Holocene activity. Fault scarp profiles and detailed mapping of alluvial fans provide strong evidence for multiple active strands in the fault system and Holocene rupture of the fault in the Monument Hill 7.5’ quadrangle (Regalla, work in progress).

Introduction

This report accompanies a map at 1:24,000 scale and a cross section for the Monument Hill 7.5’ quadrangle (Figure 1). The mapping of this quadrangle complements previous work in the area (Harkins and others, 2004a and 2004b) and furthers an ongoing effort to understand the evolution of Quaternary geology in southwest Montana. Fieldwork for this map was completed during the summer of 2004. Field mapping was done at 1:12,000 scale and compiled at 1:24,000 scale. The Monument Hill 7.5’ quadrangle is located in the Red Rock Hills, on the western flank of the Blacktail-Snowcrest Laramide uplift (Kulik and Perry, 1988), just east of the Sevier thrust front in the proximal foreland basin. The region is characterized by grass- and sage-covered hills, and can be accessed by numerous unpaved roads maintained by the Bureau of Land Management. The quadrangle is named after Monument Hill that has an elevation of 8,188 feet and is capped by a cairn of basaltic cobbles. The highest elevation (9,240 ft) in the quadrangle is at the radio tower in the western part of the quadrangle. Relief is on the order of 2,000 ft.
Figure 1. The Monument Hill 7.5' quadrangle is located in the Blacktail Mountains of southwest Montana.
Stratigraphy

Three major unconformities separate four distinct stratigraphic packages in the Monument Hill 7.5’ quadrangle -- the Paleozoic, Cretaceous, Tertiary, and Quaternary (Fig. 2). The Paleozoic stratigraphy consists of limestones, limey shales, and sandstones deposited on the western margin of North America. The distribution of these rocks is related to the Blacktail Uplift, the exposed core of which is exposed to the northeast of the quadrangle.

The Tertiary-Cretaceous Beaverhead Group (Fig. 3) is synorogenic and was deposited in the foreland basin of the Sevier orogeny. Disagreement exists regarding the source of the Beaverhead Group quartzite clasts. Janecke and others (2000) believe that the source area for the Beaverhead Group is far to the west, while J. G. Schmitt (personal communication, 2004) believes that the Beaverhead quartzite is derived from hinterland thrust sheets exposed in the Beaverhead Range to the west.

The Tertiary Sixmile Creek Formation is composed of clastics, volcanioclastics, and volcanics. These deposits were generated by uplift associated with the passage of the Yellowstone hot spot (Pierce and Morgan, 1992). The volcanics and volcanioclastics in the Monument Hill 7.5’ quadrangle are mapped as part of the Sixmile Creek Formation. Previous mapping has described these units as Tertiary Renova Formation (Lonn and others, 2000), but based on stratigraphic relationships placing Sixmile Creek conglomerates above and below the volcanic units, and good correlation with nearby sections of well constrained age (Fritz and Sears, 1993), along with detailed descriptions of the Renova Formation (Kuenzi and Fields, 1971; Fields and others, 1985; Sears and others, 1995), it is more likely that these volcanics and volcanioclastics are of Sixmile Creek age. The Sixmile Creek gravels are locally derived and locally homogeneous. However, significant regional variability exists laterally, suggesting deposition in numerous small drainage basins. The gravels in the northeast are derived from the transverse drainages in the Blacktail Range. The gravels in the western portion of the map are derived from the Beaverhead quartzite conglomerate, making the Beaverhead-Sixmile Creek contact obscure in this area because both are unconsolidated, quartzite-clast-bearing conglomerates. However, basalt clasts are a distinguishing characteristic of the Sixmile Creek conglomerates. In other places, outside the quadrangle, the contact is clearly distinguishable. Vegetation and soil color variations on aerial photographs were used to estimate the location of the contact where obscure. The basalts of the Sixmile Creek Formation were deposited in Tertiary paleovalleys but now typically crop out on the modern topographic high points, indicating an inverted topography. Quaternary deposition has been controlled by climate variations leading to multiple Quaternary alluvial deposits (Harkins and others, 2004a) and by active extension associated with the passage of the Yellowstone hot spot (Pierce and Morgan, 1992).

Structure

Structural features exposed in the Monument Hill 7.5’ quadrangle include folding of Paleozoic rocks in the northeast portion of the map and active Quaternary normal faulting in the southwest portion of the map. Paleozoic units form the western dip-slopes of the Blacktail-Snowcrest uplift. The Lombard Formation of the Snowcrest Range
Group exhibits mesoscopic, east-vergent, asymmetric, open folding. Older Paleozoic units fold disharmonically between bedding-plane-parallel decollements and likely accommodate similar shortening to that observed in the Lombard Formation with variable folding (Pecora, 1981; Harkins, 2004a). Although much of the Paleozoic section does not crop out in the map area, it can be characterized as having Sevier-Laramide age disharmonic folds with an enveloping surface dipping 15° to the west (Pecora, 1981). These units are unconformably overlain by synorogenic Beaverhead conglomerate. A large paleovalley incised into Mesozoic and Paleozoic rocks has been filled with Tertiary and younger volcanics and sedimentary rocks in the central portion of the map area. The active Monument Hill fault system crops out in the southwest portion of the map where it cuts the Cretaceous Beaverhead Group and underlying Mesozoic and Paleozoic units. The fault strand that crops out in the Monument Hill 7.5’ quadrangle likely dips west at approximately 55° (Stickney and Lageson, 2002). Fault displacement is estimated at 1,100 ft. (333 m) using empirical fault strike length/fault displacement relationships (Densmore and others, 2004; Schlische and others, 1996).

Acknowledgments

Funding for the fieldwork was provided by DOI-USGS-EDMAP grant 04HQAG0099. This grant also helped to support the authors’ research on the Monument Hill fault system. The authors would like to acknowledge Karen Porter and the reviewers at the Montana Bureau of Mines and Geology for assisting with the acquisition of this grant, and for providing technical and editorial support for the geologic map and accompanying text and cross section. We would also like to acknowledge John A. Simons of the Dillon office of the Bureau of Land Management for providing aerial photograph coverage and public land access advice, Jim Schmitt of Montana State University for his invaluable expertise in the field, and Larissa Powers and Sandro Mariani for helping with the field work. We thank Dan and Kris Johnson at the Red Rock Ranch for private land access and hospitality, everyone in the towns of Lima and Dell, Montana, Arlene Greensladd for continuous help to Lehigh University’s field crews, and Jay and Linda Talent whose endless generosity and invaluable hospitality will always be remembered.
Stratigraphic Column of Units Mapped within the Monument Hill 7.5' Quadrangle

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Thickness</th>
<th>Age</th>
<th>Map Symbol</th>
<th>Unit Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>4&11</td>
<td><1 to several hundred feet</td>
<td>Q</td>
<td>Qal, Qafy, Qafo, Qaty, Qato, Qls</td>
<td>Surficial deposits including: Alluvium, alluvial fans, alluvial terraces, landslides</td>
</tr>
<tr>
<td>1, 6, & 12</td>
<td>0 to 2,000 ft</td>
<td>T</td>
<td>Tsccg</td>
<td>Timber Hill Basalt member, informal, of Sixmile Creek Formation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tst</td>
<td>Anderson Ranch member, informal, of Sixmile Creek Formation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tst</td>
<td>Conglomerate deposit, informal, of Sixmile Creek Formation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tst</td>
<td>Tuffaceous sediment, fine-grained, and ash</td>
</tr>
<tr>
<td></td>
<td>0 to 1,600 ft</td>
<td></td>
<td>Tsca</td>
<td>Basalt</td>
</tr>
<tr>
<td>2, 3, 5, 9, 10, & 12</td>
<td>0 to 1,600 ft</td>
<td></td>
<td>Tsct</td>
<td>Cobble to boulder conglomerate</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tsca</td>
<td>Cross-bedded to massive sandstone</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tsct</td>
<td>Limey shale and limestone</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tsca</td>
<td>Limestone</td>
</tr>
<tr>
<td>7, 8, & 10</td>
<td>1000 ft</td>
<td>P</td>
<td>Pq</td>
<td>Quadrant Formation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M</td>
<td>Mlb</td>
<td>Lombard Formation of the Snowcrest Range Group</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ml</td>
<td>Lodgepole Formation</td>
</tr>
</tbody>
</table>

Figure 2. Stratigraphic column of units mapped within the Monument Hill 7.5' quadrangle. Unit thicknesses are all approximate. Compiled from noted references.
Key to references on stratigraphic column, previous page; full citation in References Cited section.

1. Fritz and others, 1993
2. Haley, 1986
3. Haley and Perry, 1990
4. Harkins and others, 2004a, b
5. Janecke and others, 2000
6. Kreps and others, 1992
7. Lonn and others, 2000
9. Ryder and Scholten, 1973
10. Scholten and others, 1955
11. Stickney and Lageson, 2002
12. Schmitt and others, 1995
Beaverhead Group Stratigraphy in the Ashbough Canyon Area
South of Monument Hill Quadrangle

<table>
<thead>
<tr>
<th>Period</th>
<th>Epoch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tertiary</td>
<td></td>
</tr>
<tr>
<td>Middle Eocene</td>
<td></td>
</tr>
<tr>
<td>Lower Eocene</td>
<td></td>
</tr>
<tr>
<td>Paleocene</td>
<td></td>
</tr>
<tr>
<td>Maastrichtian</td>
<td></td>
</tr>
<tr>
<td>Upper Cretaceous</td>
<td></td>
</tr>
<tr>
<td>Campanian</td>
<td></td>
</tr>
<tr>
<td>Santonian</td>
<td></td>
</tr>
<tr>
<td>Coniacian</td>
<td></td>
</tr>
<tr>
<td>Turonian</td>
<td></td>
</tr>
<tr>
<td>Cenomanian</td>
<td></td>
</tr>
</tbody>
</table>

Figure 3. Stratigraphic column of Beaverhead Group members in the Ashbough Canyon area (see Fig. 1). Adapted from Haley and Perry (1990).
Unit Descriptions

Qal Alluvium- Unconsolidated, well to poorly sorted deposit of silt, sand, and gravel in the active channel and/or flood plain of modern streams.

Qafy Alluvial fan deposit, younger- Unconsolidated, poorly sorted, angular to rounded, silt-to boulder-sized, locally derived clasts in active, modern alluvial fans. Bar and swale surface morphology with sage vegetation and fan-shaped depositional patterns are characteristic.

Qafq Alluvial fan deposit, older- Alluvial fans elevated 30 ft (10 m) or more above the modern drainage. Thick loess, significantly buried bar and swale surface morphology, stage III to III+ Carbonate classification, 10yr, 4/2 wet, 6/2 dry Munsell soil color, and a grassy surface are all characteristic.

Qaty Alluvial terrace deposit, younger- Well-sorted silt, sand, and gravel with characteristic flat-top morphology and sage vegetation; 10 to 15 ft (3 to 5 m) above modern channel.

Qato Alluvial terrace deposit, older- Well-sorted silt, sand, and gravel with characteristic flat-top morphology and sage vegetation; 15 to 30 ft (5 to 10 m) above modern channel.

Qaq Alluvial fan and colluvial deposits of unknown age affinity- consists of unconsolidated deposits of poorly sorted silt to cobbles that grade into the oldest fan surfaces.
Qls Landslide deposit- Unconsolidated deposit of locally derived angular, unsorted debris with characteristic hummocky topography and head scarp.

Sixmile Creek Formation (Tertiary)- Informal member names from Fritz and Sears (1993). Age dates from tephra beds ranging from 3.7 to 16 Ma (Fritz and Sears, 1993). Deposits filled extensive paleovalleys during the Tertiary.

Tscg Conglomerate deposit, informal, of Sixmile Creek Formation- Unconsolidated gravel conglomerates consisting of poorly sorted, well-rounded, sand- to boulder-sized, mostly quartzite clasts with minor amounts of basalt, volcanioclastic, gneissic, Belt argillite, Flathead Sandstone, limestone, and conglomerate clasts in a sandy matrix. Distinguished from the Beaverhead Group in this area by presence of Archean gneiss, Flathead Sandstone, and basalt clasts, as well as rounded, recycled Beaverhead Red Butte conglomerate clasts. Correlated with the Big Hole River and Sweetwater Creek members, informal, of Sixmile Creek Formation of Fritz and Sears (1993). The thickness of this unit is regionally variable. On the Monument Hill quadrangle, it is as much as 2,000 ft (610 m) thick.

Tsca Anderson Ranch member, informal, of Sixmile Creek Formation- White, volcanioclastic, fluvial tephra interbedded with light-brown silt, sand, and gravel found in patches scattered among the basalt and gravel deposits of the Sixmile Creek Formation. This unit is poorly exposed or absent in places but can be as much as 1,000 ft (305 m) thick.
Tscb Basalt member, informal, of Sixmile Creek Formation- Black, dense, very fine-grained basalt flows. Characterized by horizontal banding and columnar jointing. Variable vesicle distribution defines paleo-horizontal orientation of unit. Phenocrysts composed of plagioclase and olivine. Described by Fritz and Sears (1993) as a single basalt flow (Timber Hill basalt) and dated as 6.0±0.1 Ma (Kreps and others, 1992). This unit represents multiple basalt flows. The basalt unit can be as much as 800 ft (244 m) thick in the Monument Hill quadrangle.

Kbcq Quartzite conglomerate, informal and undivided, of Beaverhead Group- Unconsolidated gravel conglomerate consisting of poorly sorted, well-rounded, sand- to boulder-sized quartzite clasts derived from the west and composed mainly of Precambrian Belt Supergroup and Ordovician Kinnikinic Formation clasts with minor amounts of limestone, siltstone, and volcanic clasts of unknown origin (Haley, 1986) in a sandy matrix. Tertiary sediments unconformably overlie the conglomerate to the east and Quaternary alluvium overlies it to the west (Haley, 1986). The quartzite conglomerate is likely latest Cretaceous in age. Although a precise age is not known, the underlying volcanic rocks in the Bannack Pass area have been dated at 76 and 79 Ma (Kalakay, 2001), and the overlying Red Butte conglomerate (informal, of Beaverhead Group; see p. 7) is dated as Paleocene (Haley and Perry, 1990). The thickness of the Beaverhead quartzite conglomerate varies regionally. In the Red Rock Hills area, it ranges from approximately 1,000 to 1,600 ft (305 to 488 m) thick.
1Pq Quadrant Formation- Buff-colored, medium-grained, thick-bedded, cross-bedded sandstone. Characteristically forms talus slopes. The Quadrant Formation is approximately 700 ft (213.5 m) thick (Pecora, 1981).

MLb Lombard Formation of Snowcrest Range Group- Thick-bedded, light-gray, typically tight (nonporous), cliff-former, disharmonically folded where exposed in northeast part of map area. Upper unit is 300 ft (91.5 m) thick, made of crinoidal limestone and interbedded limey shale. Middle unit is 220 to 580 ft (67 to 177 m) thick, made of thin- to thick-bedded limestone with 1- to 3-ft (0.3- to 0.9-m)-thick interbeds of mudstone and siltstone (Tysdal, 1988). Lower unit described by Tysdal is not exposed in the Monument Hill quadrangle but does crop out farther east.

ML Lodgepole Formation of Madison Group- Light-gray, thinly bedded, fine- to medium-grained limestone interbedded with silty mudstone and calcareous siltstone. Approximately 400 to 480 ft (122 to 146 m) thick (Pecora, 1981). NOTE: the overlying Mission Canyon Formation of Madison Group is not present in map area. Regionally, Mission Canyon ranges from 0 to 400 ft (0 to 122 m) thick. Its absence on outcrop in quadrangle area is attributed to pre-Tertiary and/or post-Mississippian regional erosion that is schematically shown on Stratigraphic Column, p. 5.
Map and Cross-Section Symbols

- **Bedding strike and dip where measured**

- **Contact; dashed where inferred, dotted where concealed**

- **Normal fault; ball and bar on the downthrown or hanging-wall side; dashed where approximate**

- **Axial trace of anticline showing plunge; dashed where approximate**

- **Axial trace of syncline showing plunge; dashed where approximate**

- **Fault; arrows show direction of slip (cross section only)**

- **Schematic representation of disharmonic folding within Snowcrest Range Group where observed on west flank of Blacktail-Snowcrest Range (cross section only)**
References Cited

Bedrock and Surficial Geologic Map of the Monument Hill 7.5' Quadrangle Southwest Montana

Mapped and compiled by
Michael L. Newton, Christine A. Regalia, David J. Anastasio, and Franc J. Pazzaglia
Earth and Environmental Sciences Department
Lehigh University, Bethlehem, PA
2005

Cross-Section Explanation

Cqe: Mural fan eolian sand
Tscq: Conglomerate deposit of Sandel Creek Formation
Tsc: Sandel Creek Member informal, of Sandel Creek Formation
Tsb: Base of Anderson Ranch Member, Sandel Creek Formation
Kmb: Quaternary conglomerate of Bearhead Group
Kge: Limey conglomerate of Bearhead Group
Ktr: Rocks and Monument Formation; unbedded
Kp: Limestone Member of Anderson Ranch Formation
Kq: Phosphate Formation
Kf: Glacial Formation

For unit descriptions refer to the text.

For unit descriptions refer to the text.

Schematic representation of mapped units in Limestone Fm.

Endings of the upper Precambrian strata are schematic (i.e., Solidus and others, 1989, Precambrian stratigraphy of the State of Montana, Fourth Edition). The Precambrian strata extend beneath the surficial basins and are not shown. The Precambrian strata are not shown for clarity because of their great thickness and complexity. The Precambrian strata are not shown for clarity because of their great thickness and complexity.

Presence and thickness of subaqueous units are unknown owing to extensive erosion pre-Mississippian and pre-Tertiary erosion.