Until the later part of the 20th Century, the most common observational method to find one's latiude was to use a sextant os ctant and take a noon shot of the sun. The noon shot was preferred because 1) an accurate timepiece was not necessary an
an observation taken when the sun is due north or south (that is, on the observer's meridian) greatly simplifies the calculd ions (see Part II, below).
Let's use one of Lewis's observations at the Three Forks to show how the captains made their observations and calculations determine latitude.
Part I, Using the Octant to take the observation
When the sur's noon altitude was greater than 60°, Lewis and Clark used their octant, which was equipped for the back-sigh objects up to 180° apart.

Taking a noon observation with octa
and artificial horizon by the "back" and artificial horizon by the "back"
method: 1) Shortly before noon on July 29 , 1805, Lewis prepares to take an obser
vation of the sun for latiude. Because vation of the sun for latitude. Because
mountains to the south rise above the latural horizon, Lewis uses a tray filled with water to make an artificial
horizon. The water will forma a level surface and reflect the sun's image to his eye.
2) Lewis places his eye to the ocant's sack-sight vane. He then looks lrough a slit in the back-sight horizo glass and finds the image of the sun
reflected from the water in the tray.
3) While still sighting the sun's image reflected from the water, Lewis move
he octant's index arm with its index the octann's index arm with its index
mirror until the sunn's image is reflected from the index mirror to the back
sight horizon mirror and then to his eye. Because Lewis wants to obtain
the altitude of the sun's lower limb, he brings the two images together so that t
the sun's image ereflected from the wate.
As the sun continues to move towad is his eep the two images in contact at a single point Lewis turns the tangent screw on the octant's index arm, gradually decre ng the angle measured by the index arn.
5) Lewis keeps the two images just touching each other. When the two images stop overlapping, Lewis knows that the sun las reached its highest point in the sky. The images remain just touching each other for ten seconds or so, then begin to sepa las reached its highest point in the sky. The images remain just touching each other for ten seconds or so then begin to sepp
ate as the sun slowly descends. Lewis, however, already has clamped the index arm in place and, with the help of the ver,err reads the angle on the graduated arc as indicated by the zero mark on the index arm. That angle is $59^{\circ} 07$.

Part II, Applying the Corrections to the Angle Lewis Measured
The angle that Lewis measured during this noon shot is not the altitude of the sun's center but: 180° minus $2 x$ the altitude of the sun's lower limb. The angle he measured also includes angles caused by mirror misalignment (inddex error), refraction
(see Step D), parallax (see Step E), sun's semidiameter (the angle between the sun's lower limb and its center see Step F) (see Step D), paraliax (see Step E), sun's semidiameter (the angle between the sun's lower limb and its center-see Step F) and the sun's dectination (angular distance north or south of the equator-see step G),

The first step in making corrections to the observed angle usually is to subtract the index error (or in some manuals, apply he index correction) bu . ..
A) Lewis first divides the angle he measured by 2

Because Lewis had to measure the angle between the ray reflected from the index mirror and that from the artificial horizon,
the observed angle is twice that from a natural horizon alone.

$599^{\circ} 7$

29033 ${ }^{2}$
B) Then he subtracts the result of Step A from 90°

Since Lewis already has divided the observed angle by 2 in Step A, he must subrract that result from 90°, not 180 ${ }^{90}{ }^{\circ} 0^{\circ} 0^{\prime} 00^{\prime \prime}$
$\frac{-2993330}{60^{\circ} 2630}$
C) Next Lewis adds half the OCTANT'S INDEX ERROR

Note: Although the octant's index error by Lewis's method was $+2^{\circ} 11^{\prime} 40.3^{\prime \prime}$, he mistakenly used an index error of $+2^{\circ} 40^{\prime \prime}$ throughout 1805. He discovered this mistake while at Fort Clatsop on the Pacific Coast. Using the wrong index error made the latitude he calculated on July 29 too far south by about $028^{\prime 2} 20^{\prime \prime}$ or about $32^{1 / 2}$ miles. The calculations here are made as if he had used the correct index error.
D) Then he makes the correction for REFRACTION. Lewis opens
his book Tables Requisite to the table "Mean Refraction" and usi his book Tables Requisite to the table " "Mean Refraction" and, using
the oltitude derived from tep C he finds that he has $6^{2} 38^{\prime} 10^{\prime \prime}$ apparent altitude of sun's lower limb
$-0^{\circ 0} 0^{\circ} 24^{4}$ refracaction correction
lower limb
$62^{\circ} 37^{7} 46^{\prime \prime}$ apparent altitude of sun's lower limb corrected for refrac
tion
Refraction is the bending of a light ray as it passes throus sphere. This bending results from the increases in the atmosphere's
density as the light ray travels downward toward the observer. Re-
 fraction makes an object appear higher in the sky than it actually is. The light ray is
vertical, therefore, Lewis suburacted 24 " from the apparent altitide found in Sy
E) Lewis then makes the correction for PARALLAX. The latitude that Lewis is calculating must be measured from the center of the earth. Lewis again goes to his Tables Requisite, opens it to the table "Parallax of the Sun in Altitude", and, using the apparent altitude of the sun's lower limb from Step C, finds that he has to add 4 ".
$6^{6237^{4} 44^{\prime \prime}}$ altitude of lower limb corrected for refraction $++^{\circ} 0^{\circ} 0^{\circ} 04^{\circ}$ " parallax correction
F) . . adds the SUN'S SEMIDIAMETER. It is usually easier for an observer to find einer the upper or ower limb of the sun rather than its cenangular difference between the sun's center and its upper or lower limb is called it " "semidiameter"" "half diameter). The Nautical Almanac Lewis
used had a table giving the sun's semidiameter at Greenwich noon for used had a table giving the sun's semidiameter at Greenwich noon for
the 1 Ist 7th, 13 thh, 19 th and 25 th of each month. For July 25 , 1805 it was $15^{\prime} 46.7^{\prime \prime}$ and on August 1 it was $15^{\prime} 47.5^{\prime \prime}$ For his obervation on July 29 ,

He adds this to the result of Step E to find the true altiude ofis cer
ter because he shot the sun's lower limb. ter because he shot the sun's lower limb.
$62^{\circ}{ }^{3} 77^{\prime \prime} 0^{\prime \prime}$ altitude of lower limb projected to the center of the earth 6 (2053377" true altitude of the sun with respect to the earth's center G) ... and subtracts the SUN'S DECLINATION. Now Lewis has the true altitude of the sun's center above the horizon, but that alti-

A celestial body's declination is the number of degrees that body is ne north or south of the celestial equator ala given moment as changing except for a brief instant at the summer and winter solstice. From the spring equinox until the autumnal equino he sun's declination is North (+); the remainder of the year its declination is South ($($). The angle that Lewis has just measured includes the sun's North declination. The
ion from the result of Step F If the declination had been south he would add it. . vation. To do this he has to make a separate set of calculations
How did Lewis determine the sun's declination at the time of his observation?
a) Lewis looks in his Nautical Almanac for July. On page 74 in the column with the heading "Day of the Month" he finds 29 " and following across to the right to the column with the heading "Declin. North"
he finds................................... (July 29
 He subracts the decination for July 30 from that for July $29 \quad 0^{\circ} 14^{1177^{\prime \prime}}$ "change per day Sun's heclination per hour

Now Lewis needs to know how many hours had elapsed between noon at Greenwich and noon at the Three Forks. The finds the number of hours elapsed by dividing his longitude by 15 . He doesn't know his exact longitude, but he can estimate it or derive it by dead-reckoning. Lewis didn't save his calculations, so let's assume he used 111° West as his longitude: $1111^{\circ}+15=7$ hours 24 minutes $=7.4$ hours

Therefore since Greenwich noon July 29 the sun's declination has decreased
e) Lewis subtracts this amount from the sun's noon declination $+18^{\circ} 50^{\circ} 0^{\prime \prime}$ " declination at Greenwich noon $-0^{\circ} 0424^{\prime \prime}$ total change
$+18^{\circ} 455^{\prime \prime} 7^{\prime \prime}$ declination
inally, he subtracts the sun's declination from the result of Step $6^{2} 2^{\circ} 533^{\prime 3} 3^{\prime \prime}$ from Step F
$-18^{\circ} 455^{\prime \prime}$ " declination
 $44^{\circ} 080^{\circ} 0^{\prime \prime}$ co-latitude
H) From co-latitude to latitude. Steps A through G produce what is called a "colatitude". A colatitude i is the angle which, whe
he latitude, equals 90°; that is $90{ }^{\circ}$ - co-latitude $=$ latitude To derive the calculated latitude from this observation Lewis sub-

$90^{\circ} 0^{\prime} 00^{\prime \prime}$ $-44^{\circ} 08^{\circ} 00^{\prime \prime}$

$45^{5} 52^{2000 " ~}$
${ }^{55^{\circ} 52^{\prime}}$ Latitude to nearest arc minute per this observation

 $45^{\circ} 3^{\circ} 3^{\prime 2} 3^{\prime \prime}$ Lewis's calcu
$2^{4} 40^{\prime}$ instead of $2^{\circ} 911^{\prime} 40^{\prime \prime}$

