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INTRODUCTION

The Wilson Park 7.5' quadrangle is located 16 km (10 mi) north of Whitehall in southwestern 
Montana (fig. 1). Two-thirds of the quadrangle lies within the northern Beaverhead– 
Deerlodge National Forest. Land use in the National Forest is a checkerboard of public and 
private ownership, and cattle graze the high-altitude parks of Bull Mountain. Bull Mountain 
and the Whitetail Valley form a stark topographic contrast throughout the map region (fig. 
2A). An elevation difference of ~1,000 m (~3,280 ft) over a map distance of ~3 km (~2 mi) 
(30% grade) is common. 

PREVIOUS MAPPING

Weeks (1974) mapped the Wilson Park 7.5' quadrangle at a scale of 1:48,000 and Prostka 
(1966) mapped the Dry Mountain 7.5′ quadrangle at a scale of 1:24,000 (fig. 1). Several 
EDMAP projects produced 1:24,000-scale maps of adjacent quadrangles, including Tacoma 
Park (Mahoney and others, 2008); Dunn Creek 7.5' (MacLaurin and others, 2012); and parts 
of the Black Butte and Doherty Mountain 7.5' quadrangles (Dixon and Wolfgram, 1998).

GEOLOGIC SUMMARY

Late Cretaceous welded ignimbrites (fig. 2A) and thin beds of water-lain tuff (fig. 2B) are the 
oldest rocks exposed in the Wilson Park quadrangle. These volcanic rocks belong to the 
middle and upper members of the Elkhorn Mountains Volcanics (EMV) (Klepper and others, 
1957; Weeks, 1974). Welded ignimbrite caps Bull Mountain (fig. 2A) and correlates with 
ignimbrite on the Ratio Mountain 7.5′ quadrangle to the west (compare sample 7 to “RM” in 
table 1 and fig. 3A).

A high-K andesitic vent complex (Kiba) intruded and erupted through the EMV. The vent is 
exposed over 27 km2 on Bull Mountain. Hornblende lavas (fig. 2C) from the complex are 
shoshonite (fig. 3A, table 1, sample 8), and feeder dikes and sills are gabbro, diorite, and 
syeno-diorite (SiO2 = 47.9–59.7 wt. %) (fig. 3B). Coarsely porphyritic rocks of the 
shoshonite magma series (fig. 3A) are hybrids that likely formed during assimilation of 
gabbro by high-temperature syenite magma (e.g., Prostka, 1973).

The largest gold producer in Montana, the Golden Sunlight Mine (Oyer and others, 2014), is 
located south of the quadrangle and northeast of Whitehall (fig. 1). Late Cretaceous 
hydrothermal mineralization occurred during emplacement of a rhyolite porphyry intrusion. 
Gold is concentrated as electrum in pyrite (Porter and Ripley, 1985). Ore occurs in an 80 m.y. 
old (U-Pb on zircon) rhyolite breccia cut by 76.9 ± 0.5 Ma (40Ar/39Ar on biotite) lamprophyre 
dikes (DeWitt and others, 1996). The lamprophyre dikes are emplaced along structures that 
contain earlier gold mineralization. These relationships indicate that mineralization began 
with porphyry intrusion and continued during emplacement of the lamprophyre bodies. 

On Bull Mountain, Kiba cut and brecciated siliceous rocks of the EMV. Kiba intrusions 
contain sulfide minerals and formed in shear zones. These geologic relationships are similar 
to the ore setting at the Golden Sunlight Mine and suggest that mineralized zones may extend 
for several tens of kilometers north of the mine along Bull Mountain.

STRUCTURAL SUMMARY

1. Low-angle faulting (Late Cretaceous–Miocene?) 
The Dearborn Canyon Fault (DCF) occurs near the contact between Kiba and Kemm in the 
southeast corner of the map area. The fault zone dips ~20°–30° east and contains sheared, 
spheroidal Kiba set in a cataclasite matrix (figs. 2G, 2H). It is unclear if the DCF represents a 
thrust fault, a listric normal fault, or both. Palinspastic restoration of Late Cretaceous 
volcanic strata to the west rotates the DCF to horizontal.

The DCF may be a thrust fault that rotated eastward during Basin and Range block uplift. 
The geometry of the DCF is similar to that of the Corridor Fault at the Golden Sunlight Mine. 
The Corridor Fault cuts the breccia pipe at the mine, and although the fault dips shallowly to 
the east, it originally acted as an east-directed thrust fault (Oyer and others, 2014). Diorite 
sills intruded Cambrian–Mississippian strata at 77 Ma (40Ar-39Ar on biotite) ~15 km east of 
the Golden Sunlight Mine and were then folded during thin-skinned shortening (Harlan and 
others, 2008). Andesitic intrusions (Kiba) in the DCF are not folded, but are sheared, and may 
have intruded a ramp in the fold-thrust belt.

2. Normal faulting (Eocene?) 
Normal faults are exposed south and north of Big Chief Park at ~2,440 m (~8,000 ft) 
elevation. The faults are recognized by crude dip-slip lineations on north-striking fault 
surfaces. These faults may be transtensional pull-apart structures that formed within broad 
zones of northeast-striking, high-angle faults. For example, in Jack Creek, in the northeast 
map corner, north-striking normal faults formed as pull-apart structures during right-lateral 
slip on the northeast-striking, high-angle Jack Creek Fault. The age of faulting is constrained 
by fission track data that suggest block uplift between 50 and 55 Ma near the Golden 
Sunlight Mine (DeWitt and others, 1996). These structures appear to pre-date similarly 
oriented Basin and Range normal faults (discussed below), although a component of 
Quaternary movement cannot be ruled out.

3. Basin and Range block faulting (Miocene–Holocene?)
The Bull Mountain Western Border Fault (see map) controls modern topography and is 
continuous for nearly 30 km (20 mi). The fault formed during Neogene Basin and Range 
extension in southwestern Montana (e.g., Reynolds, 1979), and it dropped the Whitetail 
Valley down to the west relative to Bull Mountain (fig. 2A). Quaternary displacement on the 
fault is about 320 m (1,050 ft) (Stickney and others, 2000). If the fault formed prior to the 
Quaternary, which is likely for Basin and Range faults in southwestern Montana, then 
cumulative slip may be much greater.

DESCRIPTION OF MAP UNITS

Sediments

Qal Alluvium (Holocene)—Well-sorted gravel, sand, silt, and clay along modern streams and 
floodplains. The unit is less than 3 m (10 ft) thick.

Qc Colluvium (Holocene)—Broad areas of debris found on hillsides and the upland basins or 
parks of Bull Mountain. Consists of a mantle of stony soils and unconsolidated deposits of 
boulder debris, resulting from slope wash, mudflows, creep, and related mass-wasting 
processes (Weeks, 1974). May include cliff debris, alluvial fan, and glacial deposits. 

Qls Landslide deposit (Holocene)—Mass-wasting deposits of clay- to boulder-size sediment. 
Includes rotated or slumped blocks of bedrock and surficial sediment, soils, and mudflow 
deposits. Thickness undetermined.

Qta Talus (Quaternary)—Rock fragments, usually coarse and angular, found at the base of cliffs 
and steep slopes.

Qg  Glacial till (Lower Pleistocene)—Unconsolidated, coarse debris exposed on the crest of 
Bull Mountain. These deposits are characterized by unsorted, angular to rounded pebbles, 
cobbles, boulders, and angular blocks of many lithologies in a clay, silt, sand, and gravel 
matrix (Weeks, 1974). Thickness varies from 20 to 200 m (6 to 60 ft). 

QTs Sediment (Holocene–Eocene?)—The age of the Whitetail Valley basin-fill is unknown. 
Valley sediments formed in response to Quaternary block faulting, and uplift of Bull 
Mountain along the active Bull Mountain Western Border Fault (Stickney and others, 2000). 
Recent faulting produced an apron of talus and broad alluvial fan deposits that effectively 
mask older sediments. The Whitetail Valley is the northern extent of the Jefferson Basin, 
which contains extensive Miocene through Eocene sediments of the Sixmile Creek and 
Renova Formations, respectively (Kuenzi and Fields, 1971). Thickness undetermined.

Late Cretaceous igneous rocks

Kg Granitic plutons (Cretaceous)—Plutonic rocks that crop out west of Bull Mountain 
resemble the Butte Granite, the principal pluton by volume of the Boulder Batholith. The 
granite is best exposed in the northwestern map corner where it thermally metamorphosed, 
and sheared the Elkhorn Mountains Volcanics at Fletcher Mountain (see map). Minerals 
include normal-zoned plagioclase (45–50%), orthoclase (20–30%), and quartz (5–10%) (Berg 
and Hargrave, 2004). Lund and others (2002) dated the Butte Granite at ~74.5 Ma using U/Pb 
geochronology. Plutonic rocks that crop out on the east side of Bull Mountain, in Quinn 
Creek specifically (see map), also resemble the Butte Granite. 

Kiba High-K andesitic vent complex (Cretaceous)—Dioritic and gabbroic intrusive rocks, 
lamprophyre dikes and sills, and high-K basaltic to andesitic lavas and agglomerate. The vent 
complex formed within the middle member of the Elkhorn Mountains Volcanics (Kemm; 
discussed below). Angular fragments of Kemm in Kiba marks the intrusive contact. Intrusive 
rocks (table 1, samples 1–4 and 6) occur at lower elevations and transition to lavas and 
breccia near the top of Bull Mountain. An exception is a syeno-diorite laccolith (table 1, 
sample 5; fig. 3B) that has zoned augite phenocrysts >1 cm in length and forms Dunn Peak 
(fig. 2D). The laccolith is faulted up relative to the extrusive phase of the vent complex (see 
cross section). Lavas and breccia contain augite, olivine, and hornblende phenocrysts and are 
best exposed near Big Chief Park. Includes fine-grained dioritic to syeno-dioritic porphyries 
interpreted as intrusive equivalents to the Elkhorn Mountains Volcanics by Weeks (1974). 
Lamprophyre dikes (fig. 2E) contain biotite and augite phenocrysts. A metamorphic overprint 
of epidote, albite, and chlorite occurs throughout the igneous complex. The composite 
thickness of the high-K andesitic sequence ranges from ~600 to 1,200 m (1,970 to 3,940 ft). 

Kbh Hornblende basalts (Cretaceous)—Porphyritic lava flows with hornblende phenocrysts 
commonly 1 cm in length (fig. 2C). A thin coating of epidote occurs on many fracture 
surfaces. In thin section the hornblende is pale green, pleochroic, and largely converted to 
actinolite. Maximum thickness is 75 m (246 ft). The unit has a preliminary age of 78.6 ± 0.17 
Ma (40Ar/39Ar from hornblende; J.H. Dilles, written commun., 2015).

Elkhorn Mountains Volcanics (Late Cretaceous)

Kemu Upper member—A sequence of dominantly water-lain andesitic tuffs and volcaniclastic 
sedimentary rocks ranging from conglomerate to mudstone. Contains a few lenticular beds of 
fresh-water limestone and some andesitic flows (Weeks, 1974). East of Bull Mountain, the 
unit consists of ~20 m (~65 ft) of water-lain tuff (fig. 2B) capped by 30 m (98 ft) of platy, 
maroon hornblende-bearing lavas. North of Bull Mountain, the unit consists of isolated beds 
of banded chert overlain by 50 m (164 ft) of maroon, welded ash-flow tuff. The welded tuff 
contains lapilli and lithics at its base and flattened pumice (fiamme) near the top. The top of 
the welded tuff is rheomorphic and preserves three eruptive pulses. West to east transport is 
indicated by flow structures that separate each pulse. The unit is ~50 to 75 m (~165 to 250 ft) 
thick.  

Kem Middle member—A sequence of moderate to strongly welded dacitic ignimbrites (table 1, 
samples 7 and RM) and interlayered epiclastic deposits. Includes interlayered well-bedded, 
ash-fall crystal tuffs (Weeks, 1974). The unit crops out in the vicinity of Dearborn Canyon 
where it is several hundred meters (~1,000 ft) thick. The base is bedded, blue and gray, 
andesitic tuff. Bedding cleavage in the andesitic tuff occurs at 10 to 15 cm (~4 to 6 in) spacing. 
The top ~150 m (~490 ft) of the sequence is a gray–maroon lithic-bearing welded tuff. 
Lithophysea (fig. 2F) occur in narrow zones near the base of the welded tuff and are on average 
5 cm (~2 in) in length. The presence of lithophysea is an indicator of dense welding and 
divitrification of the tuff. Hexagonal quartz, Fe-oxide minerals, and epidote crystals line the 
lithophysea. Lithic clasts are sand to pebble size, and most are well rounded. Dark bands in the 
tuff are fiamme. The uppermost 50 m (164 ft) of welded tuff is fragmental and coarsens 
upward. Banded pumice and lithic clasts are typically 1 to 3 cm (~0.5 to 1.0 in) long, and occur 
in a purple breccia matrix. The clasts are 4 to 5 cm (~1.5 to 2.0 in), and as much as 8 cm (~3 in) 
long towards the top of the exposure. North of Bull Mountain, the welded tuff is rheomorphic; it 
exhibits isoclinal folding due to post-emplacement flow. The tuff is commonly recrystallized 
and deformed within a kilometer (~3,280 ft) of Late Cretaceous granite plutons (Kg). The 
exposed composite thickness ranges from ~300 to 1,000 m (~980 to 3,280 ft). 

Cross section

PYz  (Paleozoic–Middle Proterozoic)—Pre-Cretaceous rocks are not exposed in the Wilson Park 
quadrangle, but likely occur within 450 m (1,500 ft) below land surface. A bedded section of 
Devonian–Middle Proterozoic sedimentary rocks crop out at Black Butte (fig. 1) 5.6 km (3.5 
mi) south of the quadrangle boundary, and along the east side of the Whitetail Road 
(McDonald and others, 2012). Black Butte rocks are a piece of the faulted west limb of a 
north-plunging regional syncline. The fold axis extends south to the Golden Sunlight mine, 
where Middle Proterozoic Belt rocks host the Late Cretaceous ore body (DeWitt and others, 
1996).
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Figure 3. Late Cretaceous igneous rock compositions. Note that all samples are plotted on 
both diagrams. (A) Subdivision of high-K volcanic rocks after LeBas and others (1986) and 
Rickwood (1989). (B) Chemical classification of plutonic rocks after Wilson (1989). The 
curved solid line separates the alkalic and subalkalic fields.
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Figure 2. Photographs of rocks and features discussed in the text.
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Table 1. Geochemical data for Late Cretaceous igneous rocks. Sample locations shown on the map. Note that sample 
CWO-14-11 comes from the Ratio Mountain (RM) quadrangle (shown on fig. 1).

# 1 2 3 4 5 6 7 8 RM
Sample ID KCS-14-67 KCS-14-77 KCS-14-80 KCS-14-83 KCS-14-73 KCS-14-26 KCS-14-38 KCS-14-20 CWO-14-11

Map unit Kiba Kiba Kiba Kiba Kiba Kiba Kemm Kbh *Kemm

XRF (wt. %)
SiO2 51.12 55.24 55.56 47.84 59.68 51.84 60.58 51.15 61.71
TiO2 0.83 0.92 0.92 0.77 0.82 0.74 0.65 0.78 0.70
Al2O3 14.31 15.96 16.19 13.39 14.80 13.52 19.04 15.50 18.95
**FeO Total 8.93 8.81 8.77 9.85 6.34 8.60 3.49 8.58 3.97
MnO 0.15 0.17 0.17 0.16 0.11 0.18 0.06 0.17 0.09
MgO 6.58 4.87 4.82 9.97 4.00 9.22 1.08 5.32 1.25
CaO 8.36 7.76 7.75 9.79 5.49 9.11 5.72 8.03 4.21
Na2O 2.46 3.07 3.17 2.25 2.86 1.69 3.08 3.15 4.54
K2O 2.98 2.11 2.11 2.96 4.35 3.37 3.42 2.94 3.08
P2O5 0.44 0.32 0.33 0.43 0.29 0.45 0.16 0.50 0.17
LOI 2.66 0.10 0.00 1.53 0.15 0.51 1.63 2.18 0.81
a.t. 96.17 99.23 99.77 97.41 98.74 98.71 97.29 96.12 98.67
Trace elements (ppm) (XRF)
 Ni    40 17 16 158 40 195 3 15 3
 Cr    129 66 66 485 110 559 5 51 9
 Sc 31 25 24 29 18 27 9 25 11
 V     244 207 207 222 159 201 61 220 69
 Ba 712 773 778 483 718 663 1258 735 1155
 Rb 56 49 49 65 155 83 91 60 77
 Sr 1101 1010 1042 1061 667 798 844 1471 769
 Zr 86 137 137 82 252 94 269 99 290
 Y 18 24 24 18 23 18 22 20 24
 Nb 9 11 11 9 17 7 11 10 12
 Ga 16 19 19 16 18 15 19 17 19
 Cu 92 22 26 100 61 103 7 34 5
 Zn 82 82 85 95 66 81 47 119 58
 Pb 6 9 8 4 17 9 17 9 19
 La 22 32 31 23 51 21 38 32 38
 Ce 48 66 63 42 88 40 65 53 70
 Th 4 7 6 4 22 4 9 6 10
 Nd 25 31 28 24 36 20 28 25 29
 U 1 3 3 3 5 1 2 3 2
* Sample was collected west of the map region in the Ratio Mountain 7.5' quadrangle **All Fe expressed as Fe2+

Analysis performed by X-Ray Fluorescence (XRF) at Washington State University  LOI = loss on ignition; a.t. = analytical total
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Also shown is the location of a tuff sample from the Ratio 
Mountain 7.5' quadrangle (CWO-14-11; table 1).
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